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Abstract
We show that the trap model at its critical temperature presents dynamical
ultrametricity in the sense of Cugliandolo and Kurchan (Cugliandolo L F and
Kurchan J 1994 J. Phys. A: Math. Gen. 27 5749). We use the explicit analytical
solution of this model to discuss several issues that arise in the context of mean-
field glassy dynamics, such as the scaling form of the correlation function,
and the finite time (or finite forcing) corrections to ultrametricity, that are
found to decay only logarithmically with the associated timescale, as well as
the fluctuation–dissipation ratio. We also argue that in the multi-level trap
model, the short-time dynamics is dominated by the level which is at its critical
temperature, so that dynamical ultrametricity should hold in the whole glassy
temperature range. We revisit some experimental data on spin glasses in the
light of these results.

PACS numbers: 75.10.Nr, 05.20.−y, 02.50.−r

1. Introduction

Notable theoretical progress in our understanding of the ubiquitous ageing phenomena in
glassy systems was made possible by the recognition that the discussion of correlation
and response functions requires two times: the waiting time tw and the total elapsed time
tw + t . This appears very clearly in the framework of mean-field spin-glass models, domain-
growth (coarsening) models, or more phenomenological trap models [2]1. Although the
basic phenomenology of all these models is rather similar, the underlying physical picture is
completely different. For example, ageing in domain growth models is associated with the
growth of a coherence length. In mean-field or trap models, space is absent and ageing is
related to the structure of the energy landscape, but here again the intuition is completely
different. In mean-field models, the system never reaches the bottom of an energy valley
and there are no activated processes involved in the dynamics. Rather, the dynamics slows
1 Since here we repeatedly compare trap models and mean-field spin-glass models, we will refer to the latter class
simply as mean-field models, even though the fully connected trap model that we consider hereafter might also
deserve such a denomination.
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down because saddles with less and less ‘descending’ directions are visited as the system
ages. Conversely, in the trap model, activation is the basic ingredient of the model, and
ageing is associated with the fact that deeper and deeper valleys are reached as the system
evolves. Dynamics in the latter case is fundamentally intermittent: either nothing moves, or
there is a jump between two traps. This must be contrasted with mean-field dynamics which
is continuous in time. However, mean-field and trap dynamics can be shown to correspond to
two successive time regimes in a particular class of models [3].

In spite of these important differences, many predictions are common to the latter two
scenarios, such as:

• A short time singularity of the response function in the ageing regime, which leads to an
(ageing) low-frequency noise.

• Non-trivial violations of the fluctuation dissipation theorem (FDT), first pointed out within
mean-field models, but that also exists in trap models.

• The possibility of rejuvenation and memory, which involves the existence of different
degrees of freedom with different timescales.

Furthermore, a certain class of mean-field models (that includes the Sherrington–
Kirkpatrick (SK) model) has been conjectured to possess ultrametric dynamical properties, that
very precisely reflect and encode the ultrametric nature of the static solution. This dynamical
ultrametricity is associated with an infinite number of timescales (which diverges with the age
of the system) in the following sense: if C(t2, t1) is the correlation function between times
t1 < t2, then in the limit of large times:

C(t3, t1) = min(C(t2, t1), C(t3, t2)) ∀t2 ∈ [t1, t3]. (1)

This means that either t2 is close enough to t3, and then no further dynamics takes place
between t2 and t3, or t2 is close enough to t1 but then the age of the system hardly changes
between t1 and t2. This property of the correlation function has been shown to hold for
the ageing solution of the dynamical (mode coupling) equations describing the dynamics of
‘continuous’ spin glasses [1]. Furthermore this property is invariant under reparametrizations
of time, where t → h(t) with an arbitrary monotonic function h(t). Testing whether or not
dynamical ultrametricity also holds in realistic disordered systems is made difficult because
this property should only hold in the limit of asymptotically large times, and corrections on
finite times are expected. How large are these corrections?

In this paper, we show that exact ultrametricity holds at the critical point of the single-level
trap model (or random energy model). We give the explicit form of the correlation function
and discuss finite time (or finite forcing) corrections. Note that in this single-level trap model,
the dynamics is ultrametric although the statics is not. The issue of finite time FDT plot is
also addressed. We discuss multi-level extensions of the trap model and argue that dynamical
ultrametricity should be generic at ‘short times’, i.e. at the beginning of the ageing region. We
show the thermoremanent magnetization (TRM) data that support this idea. The relation with
1/f noise, already discussed in this context [7], is recalled.

2. The model

The trap model, introduced in the context of ageing in [4, 5] and further developed in [6], is
one of the simplest soluble models exhibiting a dynamical glass transition. In this model, one
considers a particle which is trapped in low-energy states i of depth Ei > 0, where the Ei are
random variables distributed according to ρ(E) = 1

Tc
e−E/Tc . The dynamics is chosen to be

activated: each particle stays in trap i for an exponential random time, on average equal to
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τ0 eEi/T . The quantity τ0 is a microscopic timescale which we shall take as the time unit in
the following. When the particle leaves the trap, it randomly chooses a new one among all
the others. As a consequence, at a high temperature (T > Tc), the particle spends most of
its time in the small traps, because the number of these traps (the entropic factor) dominates
the Boltzmann factor and the system equilibrates. In contrast, for T < Tc, the Boltzmann
factor is dominant and the particle explores deeper and deeper traps, so that the system never
equilibrates (in the limit of infinite number of traps). In this regime, the dynamics ages:
correlation and response functions are no longer time translation invariant, but depend on both
the waiting time tw and the total time tw + t .

3. Correlation function

Correlation functions are useful tools for characterizing the dynamics and comparing
several models. The simplest (but nevertheless non-trivial) correlation in the trap model is
�(tw + t, tw), defined as the probability of remaining in the same trap during the time interval
[tw, tw + t]. As we are considering the infinite-dimensional (or fully connected) model, this
probability is also equal to the probability P(tw + t, tw) to be in the same trap at tw + t as at tw,
since the probability of going back to the same trap vanishes in the limit of infinite number of
traps. (This is not true in finite dimensions. For instance, in one dimension,�(tw + t, tw) and
P(tw + t, tw) scale in a different way with tw .)

The calculation of the correlation function �(tw + t, tw) in the critical case T = Tc is
given in the appendix. In the limit where log tw and t are both large, we have up to first order
in a 1/ log tw expansion

�(tw + t, tw) � log
(
1 + tw

t

)
log tw

. (2)

This relation shows that �(tw + t, tw) is not a function of t
tw

, at variance with the results that
hold in the whole low-temperature phase T < Tc [7]. In contrast, taking t ∼ atαw, we obtain,
in the limit tw going to +∞,

�(tw + t, tw) = C(α) (3)

with C(α) given by

C(α) = 1 − α (α < 1) (4)

= 0 (α � 1). (5)

Note that C(α) is a monotonic decreasing function of α.
Interestingly, a similar scaling has also been found recently in the voter model [8]. To be

more specific, it was shown that the correlation function Cvot(tw + t, tw) defined by

Cvot(tw + t, tw) = 〈S(tw)S(tw + t)〉 (6)

is given by

Cvot(tw + t, tw) = log
(
1 + 2tw

t

)
log tw

(7)

to first order in 1/ log(tw), which reduces in the infinite time limit to Cvot(tw + t, tw) = C(α),
with the same C(α) as above.

An important remark is that the correlation function �(tw + t, tw) is a function of
α = log t/ log tw that cannot be written as h(tw + t)/h(tw). The latter ratio naturally
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appears (with an unknown function h) in the ageing part of the solution of the dynamical
equation corresponding to one-step replica symmetry breaking (RSB) mean-field spin-glass
models. However, for full RSB models where dynamical ultrametricity is indeed expected,
the correlation function is given by an infinite sum of contributions coming from different time
sectors [1, 2]:

C(tw + t, tw) =
∑
i

Ci
(
hi(tw + t)

hi(tw)

)
(8)

where hi are unknown (monotonic) functions defining the ith timescale, and the Ci
monotonically decay to zero for large arguments.

A useful (but up to now theoretically unjustified) form for hi(t), that allows one to give
some flesh to the above formula, is [2]:

hi(u) = exp

[
u1−µi

1 − µi

]
0 � µi � 1. (9)

It is easy to see that for this choice of hi, the timescale on which the ratio hi(tw + t)/hi(tw)
varies significantly is precisely tµiw . The choice µ = 0 therefore corresponds to stationary
dynamics, whereas µ = 1 gives full ageing. Now, we take t = tαw (with 0 < α < 1) in
equation (8) and the limit tw → ∞. All the sectors such that µi < α have relaxed to zero,
whereas the sectors corresponding toµi > α have not decayed at all. Introducing a continuum
of different values of µ, we find that the correlation function is given by

C
(
tw + tαw, tw

) =
∫ 1

α

dµρ(µ)Cµ(1) (10)

where ρ(µ) is the ‘density’ of time sectors of order tµw and Cµ(1) is the initial value of
the correlation function in this sector. From this result, one sees that C(tw + t, tw) indeed
becomes a function of α = log t/ log tw in the long time limit. Therefore, interestingly, the
superposition of an infinite number of subageing contributions defined by (9) naturally leads
to a correlation function that depends on log t/ log tw, for which the dynamical ultrametricity
property is explicit. The critical trap behaviour corresponds to a uniform contribution of all
time sectors, i.e. ρ(µ)Cµ(1) = 1, ∀µ.

4. Dynamical ultrametricity

As recalled in the introduction, Cugliandolo and Kurchan have defined dynamical
ultrametricity for the correlation function C if the following property is true: on taking three
times t1 < t2 < t3, in the limit of large times,

C(t3, t1) = min (C(t2, t1), C(t3, t2)) ∀t2 ∈ [t1, t3]. (11)

Let us now show that�(tw + t, tw) at the critical temperature is ultrametric in the sense defined
above. It will be useful to introduce the following notation:

�(t2, t1) = C1 �(t3, t2) = C2 �(t3, t1) = C3. (12)

Since correlation functions are monotonic, the inequality C3 � min (C1, C2) holds in general.
We simply have to check that (at least) one of the two correlations C1 and C2 is equal to C3.
In order to take the infinite time limit, we need to specify how t2 and t3 scale with t1. A natural
parametrization, that leads to non-trivial values of the Ci, is the following:

t3 − t1 ∼ atα1 t2 − t1 ∼ btβ1 . (13)
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We can now look at various cases:

• If β < α, then one has, for large t1:

t3 − t2 ∼ atα1 − btβ1 ∼ atα1 (14)

so that C1 = C(β) and C2 = C3 = C(α) < C(β).
• Now assuming β = α, we get C1 = C3 = C(α), as well as C2 � C3.

As a result, we have shown that the relation C3 = min (C1, C2) always holds, which implies
that dynamical ultrametricity is satisfied in this model.

The appearance of dynamical ultrametricity can be considered as a signature of the
existence of many timescales involved in the dynamics. This is indeed the case in the present
model, even though there is no static ultrametricity to account for this hierarchy of timescales.
This property in fact arises naturally from the exact balance, at the critical point, of the
Boltzmann weight eE/T and of the entropic factor ρ(E): the probability for the particle to
have a given energy (or equivalently, a given trapping time, in logarithmic scale) is essentially
uniform in the interval [0, Tc log tw]. In other words, dynamical ultrametricity here is a
consequence of the critical scale invariance.

5. Finite time analysis

An interesting analysis was introduced by Cugliandolo and Kurchan in the context of the
dynamical analysis of the SK model [1]. These authors made the assumption that, in the
limit of large times, there exists a certain function f (x, y), not necessarily smooth such that
C3 = f (C1, C2). We have shown in the previous section that such a function indeed exists in
the present case and is given by f (x, y) = min (x, y).

A useful representation, proposed in [1], is to plot the curves of constant C3 = f (C1, C2)

in the (C1, C2)-plane, which reduces for our case to two straight lines (C1 = C3 andC2 = C3)
at right angles. For finite times, the function f has to include a timescale as the third
argument, so that C3 = F(C1, C2; t1), where f (x, y) = limt1→∞ F(x, y; t1). The (C1, C2)-
plane representation is then a good way to visualize the convergence towards the asymptotic
function f (C1, C2). It has been used with numerical data to test if dynamic ultrametricity
holds in realistic systems, with rather inconclusive results [1, 9], except in a few cases, such
as in a recent study of the four-dimensional Edwards–Anderson model [10].

Let us apply this procedure to the critical trap model. In order to deal with finite time
expressions, we shall go back to equation (2), restated as

C(tj , ti) =
log

(
1 + ti

tj−ti
)

log ti
. (15)

Note that all the finite time results reported in this paper should be understood as first-order
terms in a 1/ log t1 expansion. Inverting these relations to express t2 and t3 as functions of
t1, C1 and C3, we can write an explicit expression for F(C1, C2; t1):

C3 = F(C1, C2; t1)
= − 1

log t1
log

(
t
−C1
1 + t−C2

1

(
1 − t−C1

1

)1+C2
)
. (16)

In order to plot the constantC3 curves, it will be useful to also expressC2 as a certain function
G(C1, C3; t1):

C2 = G(C1, C3; t1) = log
(
1 − t−C1

1

) − log
(
t
−C3
1 − t−C1

1

)
log t1 − log

(
1 − t−C1

1

) . (17)



3044 E Bertin and J-P Bouchaud

0 0.2 0.4 0.6 0.8 1

C
1

0

0.2

0.4

0.6

0.8

1

C
2

Figure 1. Plot of constant C3 = F(C1, C2; t1) in the (C1, C2)-plane. From left to right, the
curves correspond to C3 = 0.1, 0.3, 0.5, 0.7. Each set of three curves shows the convergence
with t1 towards the asymptotic function f (C1, C2) = min (C1, C2): t1 = 105 (full line),
1010 (dot–dashed line), 1015 (dashed line).

The resulting plots in the (C1, C2)-plane are displayed in figure 1, for C3 = 0.1, 0.3, 0.5, 0.7
and for three different times

(
t1 = 105, 1010 and 1015

)
. Note that the convergence is very slow

close to the infinite time singularity.
Cugliandolo and Kurchan also introduced in [1] the notion of correlation timescales

through the representation of f (C,C) versus C. As already mentioned before, f (C,C) � C
in general. There may exist some special ‘fixed’ pointsC∗ such that f (C∗, C∗) = C∗. Each of
these fixed points has been shown to be associated with a correlation timescale. If dynamical
ultrametricity holds in a particular time sector, all C belonging to a certain interval [C′, C ′′]
are fixed points. In our case, ultrametricity holds over the full correlation interval [0, 1]. But
in our model, we can go beyond the infinite time analysis and quantify the convergence of
F(C,C; t1) with t1 towards the asymptotic function f (C,C) = C. We find

F(C,C; t1) = C −
log

(
1 +

(
1 − t−C1

)1+C
)

log t1
. (18)

For C > 0, this expression simplifies further at large times:

F(C,C; t1) � C − log 2

log t1
. (19)

Interestingly, the leading correction does not depend on C, and it is valid only if C is not too
close to 0. Figure 2 displays the plots of F(C,C; t1) − C, for the same values of t1 as in
figure 1.

The last result may also be interpreted in the framework of figure 1. For a given value of
C3, the point C(t1) defined by the relation F(C(t1), C(t1); t1) = C3 converges to the infinite
time right-angle singularity C1 = C2 = C3 as (see equation (19)):

C(t1) � C3 +
log 2

log t1
. (20)
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Figure 2. Plot ofF(C,C; t1)−C versus C for the same values of t1 as in figure 1. The dotted curve,
corresponding to the infinite time limit f (C,C) = C, is added for comparison. The departure
from f (C,C) = C is almost independent of C, except for C close to 0.

This logarithmic correction may explain why it seems so difficult to observe the convergence
towards the ultrametric relation in experimental or numerical data, where only a few decades
(usually between four and six) are available.

6. The effect of ‘shear’

The effect of an external ‘shear’ (or power injection) on ageing was investigated in the context
of mean-field models in [9] and the trap model in [11]. In both models, ageing is interrupted
by the shear for tw larger than a timescale τr which diverges as the shear rate γ̇ tends to zero.
In the model considered in [11], this timescale is given by

τr � 1

γ̇

(
log

1

γ̇

) 1
2

. (21)

In the limit where the waiting time tw is much larger than τr, the dynamics of the model becomes
stationary. The (power-law) distribution of trapping times p(τ) is, in a first approximation,
unaffected by the shear for τ � τr , whereas for τ � τr , p(τ) decays exponentially. So for
t � τr one finds the same result as above with tw replaced by τr :

C(t + tw, tw) = C
(

log t

log τr

)
� 1 − log t

log τr
. (22)

As discussed in [9, 10], dynamical ultrametricity in this context manifests itself by the
appearance of an infinity of timescales in the limit τr → ∞ (i.e. γ̇ → 0): the time needed for
the correlation to decay to a certain value c diverges as τ 1−c

r (see [12] for a further discussion).
Note that a log t/ log τr scaling was already proposed in [9] in order to fit the numerical data.
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Figure 3. Plot of the integrated response χ(t2, t1) versus C(t2, t1) parametrized by t1, for t2 = 103,
105 and 1010 from bottom to top. The local slope is equal to −X(t2, t1)/Tc, and it converges very
slowly towards the asymptotic value −1/Tc for small C (see inset). Tc is chosen as the temperature
unit.

7. The fluctuation–dissipation ratio

It is interesting to study the fluctuation–dissipation ratio X in the trap model at the critical
point2. This ratio is defined as

X(t2, t1) = TR(t2, t1)

∂C(t2, t1)/∂t1
(23)

where R(t2, t1) is the response of the system at time t2 > t1 to a small bias field applied at
time t1 (see [7, 14] for details). In the trap model, where the field only changes the trapping
time of the starting site, one finds that the following relation holds in general:

TR(t2, t1) = −∂C(t2, t1)
∂t2

. (24)

Using this result, one sees that in the ‘liquid’ phase T > Tc where all two-time functions only
depend on time differences, X ≡ 1: the usual FDT holds. In the glass phase, on the other
hand, one finds thatX(t2, t1) = t1/t2: the value ofX is non-trivial in the whole scaling regime
t2 − t1 ∼ t1. Right at the critical point T = Tc, one can express X up to first order in 1/ log t1
as

X(t2, t1) =
(
tC1 − 1

)2

tC1
(
tC1 + 1 − C) C ≡ C(t2, t1) > 0. (25)

So for any fixed C > 0, X tends to 1 in the asymptotic limit t1 → ∞. We show in figure 3
the now famous plot of the integrated response χ(t2, t1) = ∫ t2

t1
R(t2, t

′) dt ′ versus C(t2, t1),
parametrized by t1 > t2, which should yield a straight line of slope −1/Tc when the FDT
holds. Again, one sees a very slow convergence towards the asymptotic result for small values
of C.
2 Note that the critical point of the trap model that we consider here is quite different from that of, say, the Ising
model. The fluctuation–dissipation ratio in that case was considered in [13].
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8. The multi-level trap model and discussion

The simple trap model described above can be considered as a one-step RSB model. In order
to generalize the model to a full RSB one, it has been proposed in [7] (and further studied
in [15]) to follow Parisi’s procedure for the static solution of the SK model. Roughly speaking,
it means that each trap is recursively subdivided into a new series of traps, in a hierarchical
manner. Each level k of traps is characterized by a certain overlap between states qk and
by an exponential probability distribution of the energy barriers, with a critical temperature
T kc depending on the level index k. The critical temperatures are related to Parisi’s function
xk = x(qk) as T kc = T/xk, and satisfy the relations T kc < T

k−1
c . At any temperature, the levels

of the tree corresponding to q > qEA(T ), where qEA is the Edwards–Anderson parameter, are
such that xk > 1, so that these levels are equilibrated (i.e. T kc < T ).

In the single-level trap model, the correlation function �(tw + t, tw) in the ageing phase
T < Tc behaves at short times as

�(tw + t, tw) � 1 − sinπx

π(1 − x)
(
t

tw

)1−x
1 � t � tw (26)

with x = T
Tc

. In the multi-level model with a finite number (M) of levels, the total correlation
function is defined as

C(tw + t, tw) =
M∑
k=0

qk[�k(tw + t, tw)−�k+1(tw + t, tw)]

= q0 +
M∑
k=1

(qk − qk−1)�k(tw + t, tw) (27)

qk being the kth level overlap, and �k(tw + t, tw) is the probability that the process has never
jumped beyond the kth layer of the tree between tw and tw + t with the convention that
�0(tw + t, tw) = 1 and �M+1(tw + t, tw) = 0 (see [7] for details). From this definition, we
see that C(tw + t, tw) is dominated at short times by the levels k with xk close to 1, for which
the short time singularity is the strongest. (We assume that T < T 0

c , i.e. at least one level
is ageing.) Therefore, we expect to observe the dynamical ultrametricity associated with the
level k∗ for which xk∗ = 1 in the ‘short’ time regime log t/ log tw < 1, before the t/tw regime
associated with the levels k < k∗ sets in. (Note that if C(tw + t, tw) is a function of t/tw , then
the function f (x, y) defined above cannot be equal to min(x, y).)

Interestingly, ‘short time’ dynamical ultrametricity exists for the hierarchical tree model
in the whole low-temperature phase, but has no relation with the static ultrametricity built
in the tree structure which encodes Parisi’s RSB solution. Thus, the origin of dynamical
ultrametricity in the generalized trap model is again very different from that found in mean-
field spin-glass models, which in the latter case is deeply related to the Parisi function x(q)
which encodes the structure of the tree. As mentioned in the introduction, the physical
interpretation of ageing in the two scenarios is radically different, although some of the
phenomenology is very similar.

Ageing experiments in spin glasses have been interpreted within the framework of the
multi-level trap model in [7]. The need for several levels comes not only from rejuvenation
and memory in temperature shift experiments, but also from the detailed shape of the TRM
relaxation at a given temperature, which shows that the short time and long time singularities
are described by different exponents xk [16]. The short time exponent x ∼ 0.8 is significantly
larger than the long time exponent, x ∼ 0.2.

As discussed in [17, 18], it is natural to interpret the different levels of the hierarchy in
terms of length scales, associating a value of x = x(,) with each length scale ,, such that
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Figure 4. Plot of the TRM data in a AgMn spin glass at T /Tg = 0.75, for tw = 300, 1000, 3000
and 10 000 s. The horizontal axis is the variable s(t, tw) defined in the text. The rescaling is very
good for s(t, tw) > 0.3 approximately (or log t/ log tw < 0.7), but becomes inadequate for longer
times t, as more clearly seen in the inset where log s is used. The dashed line is an affine fit of the
short time part of the data.

x(,) ∝ ,−θ , where θ > 0 is the ‘energy’ exponent. Therefore, one can expect that for any
temperature within the spin-glass phase, there will be a particular ‘critical’ length scale ,∗

such that x(,∗) = 1. This particular length scale will therefore contribute to the correlation
and response as a function of log t/ log tw.

We have re-analysed some TRM data in the spirit of the present discussion, assuming
that FDT holds in the regime t � tw. We show in figure 4 the decay of the TRM in AgMn
at T = 0.75Tg [19], plotted as a function of s(t, tw) = log(1 + tw/t)/ log tw, as suggested by
equation (2). This figure shows that the rescaling is very good at short times, but is violated for
large t/tw (corresponding to small s(t, tw)). From equation (27), we indeed expect to observe
the sum of a contribution M(k < k∗) from the levels k < k∗ (that only depends on t/tw) and a
contribution from k � k∗, proportional to s(t, tw), and finally a non-ageing contribution from
k > k∗ that can be assumed to be small. Whenα = log t/ log tw < 1, the first contribution does
not vary much, since (t/tw)1−xk = t (α−1)(1−xk)

w is very small for large tw , whereas the second
contribution is a function of α. This suggests that in the short time regime one should observe

M(tw + t, tw) = M(k < k∗) +m1s(t, tw) (28)

where m1 is a certain prefactor. The quantity ϕ = m1/(M(k < k∗) + m1) measures the
relative contribution of the levels k < k∗ and k � k∗ to the total decay of the signal. The
dashed line shown in figure 4 is a linear fit of the initial decay, as a function of s, from which
one extracts (in this particular example) ϕ ≈ 0.2.

In all the above formulae, time is implicitly measured in units of a microscopic time τ0.
The value of τ0 is not necessarily an individual flip time ∼10−12 s, since collective dynamics
may exist in the vicinity of the transition point (see [20, 21] for a detailed discussion). In
figure 4, we have chosen τ0 = 10−5 s to achieve the best rescaling. This value is very close to
that extracted from the analysis of [20].
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The conclusion is that the TRM data are indeed compatible with a log t/ log tw behaviour
for short times. Note that this behaviour is tantamount to a logarithmic dependence of the ac
susceptibility or to 1/f noise. We have insisted in previous papers [7, 15] on the fact that the
existence of levels in the vicinity of x = 1 generically leads to 1/f noise for long times and
low frequencies, because the contribution of other levels (both above and below k∗) becomes
negligible in that regime. Here we show that the degrees of freedom contributing to 1/f noise
also give rise to dynamical ultrametricity.

Acknowledgments

We thank L Berthier and E Vincent for fruitful discussions.

Appendix

Here we report the detailed calculation of the correlation function �(tw + t, tw) for T = Tc.
Let us define the Laplace transform of�(tw + t, tw) with respect to tw:

�̂(t, E) =
∫ ∞

0
dtw e−Etw�(tw + t, tw). (29)

It was shown in [7] (using a slightly different definition of the Laplace transform) that

�̂(t, E) = 1

E

〈
τ

Eτ+1 e−t/τ 〉〈
τ

Eτ+1

〉 (30)

where 〈· · ·〉 denotes the average over the distribution of trapping times ρ(τ). Taking τ0 as the
time unit, the denominator reads〈 τ

Eτ + 1

〉
=

∫ ∞

1

dτ

τ 2

τ

Eτ + 1
(31)

=
∫ ∞

E

du

u(1 + u)
(32)

= log

(
1 +

1

E

)
. (33)

Defining f̂ (E) as

f̂ (E) ≡ 1

E log
(
1 + 1

E

) (34)

we can write �̂(t, E) as

�̂(t, E) = f̂ (E)
∫ ∞

1

dτ

τ 2

τ

Eτ + 1
e−t/τ . (35)

Using the relation

τ

Eτ + 1
=

∫ ∞

0
dtw e−Etw e−tw/τ (36)

we get

�̂(t, E) = f̂ (E)
∫ ∞

0
dtw e−Etw

∫ ∞

1

dτ

τ 2
e−(tw+t)/τ (37)

= f̂ (E)
∫ ∞

0
dtw e−Etw 1 − e−(tw+t)

tw + t
. (38)
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Performing the inverse Laplace transform, we obtain a convolution:

�(tw + t, tw) =
∫ tw

0
duf (u)

1 − e−(t+tw−u)

t + tw − u (39)

where f (u) is the inverse Laplace transform of f̂ (E). The asymptotic large u behaviour of
f (u) is readily calculated using a tauberian theorem [22]

f (u) = 1

logu
+ O

(
1

(logu)2

)
u→ ∞. (40)

Assuming now that t � 1, one can neglect the exponential term in (39), to find

�(tw + t, tw) �
∫ tw

0
du

f (u)

t + tw − u. (41)

We wish to calculate �(tw + t, tw) for very large tw, up to first order in 1
log tw

. Since we only
know the large u behaviour of f (u), it is convenient to separate the above integral into two
parts�1 and�2, introducing a bound A such that 1 � A� tw . The first term reads

�1 =
∫ A

0
du

f (u)

t + tw − u � 1

t + tw − A
∫ A

0
f (u) du (42)

so that this term should be of order A
tw

with logarithmic corrections, as can be deduced from

the small E behaviour of f̂ (E). Now, making a change of variable u = tw e−v log tw in the
second term�2, and keeping only the first term in the expansion of f (u):

�2 =
∫ 1− logA

log tw

0
dv

e−v log tw

1 + t
tw

− e−v log tw

1

1 − v . (43)

For large log tw , the integral is dominated by the vicinity of v = 0, so that a small v expansion
of the last factor 1/(1 − v) can be performed:

�2 =
∫ 1− logA

log tw

0
dv

e−v log tw

1 + t
tw

− e−v log tw
(1 + v + O(v2)). (44)

Replacement of the upper bound by∞ yields corrections of order 1/tw, which can be neglected.
The nth term of the v expansion leads to a contribution of order

(
1

log tw

)n+1
, as can be seen

using the new variable z = u log tw . So one can keep only the first term, which reads

∫ ∞

0
dv

e−v log tw

1 + t
tw

− e−v log tw
= 1

log tw

∫ 1

0

dx

1 + t
tw

− x (45)

= 1

log tw
log

(
1 +

tw

t

)
. (46)

Moreover, the second term in the large u expansion off (u) also leads to a (log tw)−2 correction.
As a conclusion, it has been shown that the correlation function�(tw + t, tw), in the limit of
large tw and t, is given by

�(tw + t, tw) = log
(
1 + tw

t

)
log tw

+ O
(

1

(log tw)2

)
(47)

where the coefficient in front of the subdominant term could be computed exactly, if needed.
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